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Most systems, when pushed out of equilibrium, respond by building up currents of locally conserved
observables. Understanding how microscopic dynamics determines the averages and fluctuations of these
currents is one of the main open problems in nonequilibrium statistical physics. The additivity principle is a
theoretical proposal that allows to compute the current distribution in many one-dimensional nonequilibrium
systems. Using simulations, we validate this conjecture in a simple and general model of energy transport, both
in the presence of a temperature gradient and in canonical equilibrium. In particular, we show that the current
distribution displays a Gaussian regime for small current fluctuations, as prescribed by the central limit theo-
rem, and non-Gaussian (exponential) tails for large current deviations, obeying in all cases the Gallavotti-
Cohen fluctuation theorem. In order to facilitate a given current fluctuation, the system adopts a well-defined
temperature profile different from that of the steady state and in accordance with the additivity hypothesis
predictions. System statistics during a large current fluctuation is independent of the sign of the current, which
implies that the optimal profile (as well as higher-order profiles and spatial correlations) are invariant upon
current inversion. We also demonstrate that finite-time joint fluctuations of the current and the profile are well
described by the additivity functional. These results suggest the additivity hypothesis as a general and powerful

tool to compute current distributions in many nonequilibrium systems.
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I. INTRODUCTION

Understanding the physics of systems out of equilibrium
remains challenging to a large extent, even in the simplest
setting for which one could expect to make significant ad-
vances, which is that of a nonequilibrium steady state
(NESS). Even in this simple situation difficulties abound
mainly because out of equilibrium the dynamics plays a
dominant role [1,2]. For instance, the phase space available
to a system in a NESS depends crucially on the dynamics
resulting in a probability measure for microscopic configu-
rations which is not known in general for a NESS, as it will
inherit this dependence on the dynamics [3]. This is in con-
trast to the equilibrium case, where the available phase space
is uniquely determined by the Hamiltonian and the Gibss
distribution provides the probability measure for microscopic
configurations. One can ask however questions on the statis-
tics of the macroscopic observables characterizing a NESS,
as for instance the current flowing through the system [4-7].
In equilibrium, the fluctuations of macroscopic quantities,
which are a reflection of the hectic microscopic world, are
strikingly independent of microscopic details, being solely
determined by thermodynamic quantities as the entropy, free
energy, etc. A natural way to seek a macroscopic theory of
nonequilibrium phenomena is thus to investigate the fluctua-
tions of macroscopic currents. Unveiling the relation be-
tween microscopic dynamics and current fluctuations has
proven to be a difficult task [4—13], and up to now only few
exactly solvable cases are understood. An important step in
this direction has been the development of the Gallavotti-
Cohen fluctuation theorem [12,13], which relates the prob-
ability of forward and backward currents reflecting the time-
reversal symmetry of microscopic dynamics. However, we
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still lack a general approach based on few simple principles.
Recently, Bertini, De Sole, Gabrielli, Jona-Lasinio, and Lan-
dim [4] have introduced a hydrodynamic fluctuation theory
(HFT) to study large dynamic fluctuations of diffusive sys-
tems. This is a very general approach which leads to a hard
variational problem whose solution remains challenging in
most cases. Simultaneously, Bodineau and Derrida [5-7]
have conjectured an additivity principle for current fluctua-
tions in one dimension which can be readily applied to ob-
tain quantitative predictions and, together with HFT, seems
to open the door to a general theory for nonequilibrium
systems.

In this paper, we test in depth the validity of the additivity
principle in a simple and very general diffusive model. In
particular, we investigate the fluctuations of the energy cur-
rent in the one-dimensional (1D) Kipnis-Marchioro-Pressuti
(KMP) model of heat conduction, which represents at a
coarse-grained level a large class of quasi-1D diffusive sys-
tems of technological and theoretical interest for which un-
derstanding current statistics is of central importance. Our
results strongly support the validity of the additivity prin-
ciple to describe current fluctuations in one dimension, both
in the presence of a temperature gradient (NESS) and in
canonical equilibrium. In particular, we find that the current
distribution shows both Gaussian and non-Gaussian regimes,
and obeys the Gallavotti-Cohen symmetry. The system modi-
fies its temperature profile to facilitate a given current fluc-
tuation, as predicted by the theory and this profile (as well as
any other higher-order profile and spatial correlation) turns
out to be independent of the sign of the current. We also
explore physics beyond the additivity conjecture by studying
the fluctuations of the total energy in the system, which ex-
hibit the trace left by corrections to local equilibrium result-
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ing from the presence of weak long-range correlations in the
NESS. In addition, we extend the additivity hypothesis to
study the joint fluctuations of the current and the profile.

The paper is structured as follows. In next section, we
describe the additivity principle from a general perspective.
Section IIT introduces the KMP model in one dimension. In
Sec. IV we report the results of our simulations, together
with a detailed comparison with theoretical predictions. Here
we also show evidence of structure beyond the additivity
scenario. Section V investigates the joint fluctuations of the
current and the temperature profile, extending the additivity
principle to understand these finite-time corrections. Finally,
we present our conclusions in Sec. VI and a number of ap-
pendices describe some technical aspects of the discussion in
the main text. Part of the work reported in this paper was
presented in a shorter Letter [14].

II. ADDITIVITY PRINCIPLE

The additivity principle (to which we will also refer here
as BD theory) is a conjecture first proposed by T. Bodineau
and B. Derrida [5] that enables one to calculate the fluctua-
tions of the current in 1D diffusive systems in contact with
two boundary thermal baths at different temperatures, 7
# Tg. It is a very general conjecture of broad applicability,
expected to hold for 1D systems of classical interacting par-
ticles, both deterministic or stochastic, independently of the
details of the interactions between the particles or the cou-
pling to the thermal reservoirs. The only requirement is that
the system at hand must be diffusive, i.e., Fourier’s law must
hold. If this is the case, the additivity principle predicts the
full current distribution in terms of its first two cumulants.
Equivalently, one may use the same formalism to study dif-
fusive particle systems coupled to particle reservoirs at the
boundaries at different chemical potentials and obeying
Fick’s law, or any other open diffusive system characterized
by a single locally conserved field. However, in this paper
we stick for simplicity to the energy-diffusion version of the
problem. Let Py(q,T;,Tg,t) be the probability of observing
a time-integrated current Q,=¢gt¢ during a long-time ¢ in a
system of size N. This probability typically obeys a large
deviation principle [15,16],

PN(q’ TL9 TR9t) -~ e+t}—N(q,TL,TR)’ (1)

where Fy(q,T;,Tg) is the current large deviation function
(LDF), such that Fy({g),T;,Tg)=0 and Fy(q#{q),T.,Tx)
<0, with {(g)=1im,_,,, Q,/t. This means in particular that cur-
rent fluctuations away from the average are exponentially
unlikely in time. The additivity principle relates this prob-
ability with the product of probabilities for sustaining the
same current in subsystems of lengths N—n and n,

Pu(q, Ty, Tg,t) = m?X[PN—n(quL’ T,0P,(q.T.Tg,1)]. (2)

The maximization over the contact temperature 7 can be
rationalized by writing the above probability as an integral
over T of the product of probabilities for subsystems and
noticing that these should obey also a large deviation prin-
ciple akin to Eq. (1). Hence a saddle-point calculation in the
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long- limit leads to Eq. (2). In this way, Eq. (2) is only valid
in the appropriate asymptotic limit. The additivity principle
can be then rewritten for the large deviation function as

‘FN(q’ TL’ TR) = m?X[fN—n(anLa T) + ‘Fn(q’ T9 TR)] (3)

We now may adopt a scaling form Fy(q,T;,Tx)
=N"'G(Nq,T,,Ty) for the current LDF [5-7] and proceed by
slicing iteratively the 1D system of length N into smaller and
smaller segments. For small enough segments the tempera-
ture difference across each of them will be small, so for
small currents g ~ O(N7") each interval can be considered to
be close to equilibrium and hence exhibits locally Gaussian
fluctuations around the average current (given by Fourier’s
law) at the leading order. In this way we obtain in the con-
tinuum limit the following variational form for G [5-7]

"[g + k[T, ()T, (x)] ”
0 20{T,(x)]

G(g) =—min )

T,(x)

where we dropped the dependence on the baths for conve-
nience. Here «(T) is the thermal conductivity characterizing
Fourier’s law, (Q,)/t=—«(T)VT and o(T) measures current
fluctuations in equilibrium (7,=T,) and (Q7)/t=0o(T)/N.
The optimal temperature profile 7,(x) derived from Eq. (4)
by functional differentiation obeys

2
etr, o OV - g aotr k). ©

where K(g?) is a constant which guarantees the correct
boundary conditions, 7,(0)=7;, and T,(1)=T. In what fol-
lows we assume 7;>Ty without loss of generality. Equa-
tions (4) and (5) completely determine the current distribu-
tion, which is in general non-Gaussian (except for very small
current fluctuations) and obeys the Gallavotti-Cohen symme-
try,

G(-q)=6(q) - &q, (6)
with £ a constant defined by [5]

oo ST

Moreover, the optimal profile solution of Eq. (5) is indepen-
dent of the sign of the current, T, (x)=T_,(x), a rather coun-
terintuitive result which, together with the Gallavotti-Cohen
relation, reflects the time-reversal symmetry of microscopic
dynamics [12,13].

In the simplest case, when K(g?) is large enough for the
right-hand side of Eq. (5) not to vanish—something that hap-
pens for currents close to the average, the optimal profile
T,(x) is monotone and we have (T, > Tp)

dr,(0) _ 4l
dx  KT()]

V1 +20[T(x)]K(g?), (7)

Using this expression in Eq. (4) leads to
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~ «(T) 1+ K(g*)a(T)
gw)—J;?UUj{ _||5?3E77_63}dT (8)

and integrating Eq. (7) above over the whole interval x
€[0,1] we obtain an implicit equation for K(g?),

L x(T)
o= | ©)
7 V1 +2K(¢g»)a(T)
In many applications it is interesting to work with the Leg-
endre transform of the large deviation function,

w(n) = }ijx[g(m gl (10)

or equivalently u(\)=N"'[G(g,)+\g,], with g,(\) given by
3,G(q,)+\=0. By noticing that 9,G(q)=G/q+Kq, it then fol-
lows for monotone profiles

KN | (T «(T) 2
uN)=—— J ———dT ¢, (11)
1p \T+2K(\)o(T)

where K(\) is now obtained from

Ty

- f { _senlg,(V] 1} a
7, L V1 +2K(N)o(T)

and sgn(q)=|q|/q is the sign function. The function u(\) can
be viewed as the conjugate potential to G(q), with \ the
parameter conjugate to the current ¢, a relation equivalent to
the free energy being the Legendre transform of the internal
energy in thermodynamics, with the temperature as conju-
gate parameter to the entropy.

When the constant K is negative enough for the right-
hand side of Eq. (5) to vanish at some point, the resulting
optimal profile 7,(x) becomes nonmonotone. In this case it
can be shown [5] that the expressions for G(g) and K(g?), or
their equivalent formulas in N space, are just the analytic
continuation of their monotone-case counterparts. Appendix
A shows the particular expressions for the current LDF and
the associated optimal profile, both in the monotone and non-
monotonous cases, as derived when applying this general
scheme to the particular model of interest in this paper, the
KMP model of heat conduction [17].

Before continuing with the description of this model, it is
worth noticing that the additivity principle can be better un-
derstood within the context of hydrodynamic fluctuation
theory of Bertini er al. [4], which provides a variational prin-
ciple for the most probable (possibly time-dependent) profile
responsible of a given current fluctuation. The probability of
observing a particular history of the temperature profile
T(x,t) and the rescaled current j(x,#) during a macroscopic
time is, according to HFT [4,18],

P({T(x,1),j(x,0)}) ~ exp(= NZ[T.j]), (13)

where the functional Z, can be written as
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’ 2
I[1.j]= J i [](x 7+ &[TCe, DT (x,7)]

20[T(x,7)] > (14)

and where the rescaled current field is related to the tempera-
ture profile via the continuity equation 9,T(x,7)+d.j(x,7)
=0. The large deviation function of the integrated current is

then
t
<%=%)~m4+ﬁam} (15)
where G(q) is related to Z,[T, ] via
1
G(g)=lim| — —min Z[T,j] |, (16)
t—o© 1 T(x,7)
Jx,7)

with the constraint

Cl=lf jlx,ndT, (17)
1y

and T(x,7) and j(x, 7) coupled via the above continuity equa-
tion. Solving this time-dependent problem to obtain explicit
predictions for the current LDF remains a challenge in most
cases. The additivity principle, which on the other hand can
be readily applied to obtain quantitative predictions, is
equivalent within HFT to the hypothesis that the optimal
profiles T(x, 7) and j(x, 7) solution of the variational problem
(16) and (17) are time independent, in which case we recover
Eq. (4) for G(g). In some special cases this approximation
breaks down for extreme current fluctuations [4,18,19], but
even so the additivity hypothesis correctly predicts the cur-
rent LDF in a very large current interval, making it very
appealing.

III. KMP MODEL

The system is defined on a 1D open lattice with N sites
[17]. Each site models an harmonic oscillator which is me-
chanically uncoupled from its nearest neighbors but interact
with them through a random process which redistributes en-
ergy locally. In this way, a configuration is given by C
={e;,i=1...N}, where ¢; € R, is the energy of site i and the
stochastic dynamics proceeds through random energy ex-
changes between randomly chosen nearest neighbors, i.e.,
(ej,€i01)— (€] ,el,,) for i e[1,N—1] such that

i+1

e/ =ple;+e),

el =(1=p)lej+eny), (18)

With pe[0,1] a homogeneous random number so e;+e;,;
=e/+e/,,. In addition, boundary sites (i=1,N) may also ex-
change energy with boundary heat baths at temperatures 7,
for i=1 and Ty for i=N, i.e., ¢; y—e] y such that

ei,N=p(gL,R+el,N)’ (19)

with €; p randomly drawn at each step from a Gibbs distri-
bution at the corresponding temperature, B; exp(—Biex), k
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=L,R, and p €[0,1] random. For T; # Ty KMP proved [17]
that the system reaches a nonequilibrium steady state which,
in the N—o hydrodynamic scaling limit, is described by
Fourier’s law with a nonzero average current

dT.
W=k e e
dx
with (T =% and a linear energy profile
To(x) =T +x(Tg—Tp). (21)

In addition, convergence to the local Gibbs measure was
proven in this limit [17], meaning that ¢, i €[1,N], has an
exponential distribution with local temperature Ty [x=i/
(N+1)] in the thermodynamic limit. However, corrections to
local equilibrium (LE), though vanishing in the N— o limit,
become apparent at the fluctuation level [26,27], as we will
show below. Moreover, the fluctuations of the current in
equilibrium (7;=Ty) are described by o(T)=T7. It is also
worth noticing that KMP dynamics obeys the local detailed
balance condition and is therefore time reversible [13], see
Appendix D. In this way we expect the Gallavotti-Cohen
symmetry to hold in this system, see Eq. (6).

The KMP model plays a fundamental role in nonequilib-
rium statistical physics as a benchmark to test theoretical
advances and represents at a coarse-grained level a large
class of quasi-1D diffusive systems of technological and the-
oretical interest. In this way, understanding how the energy
current fluctuates in the KMP model is of central importance
to understand current statistics in more realistic systems. Fur-
thermore, the KMP model is an optimal candidate to test the
additivity principle because: (i) one can solve Egs. (4) and
(5) to obtain explicit predictions for its current LDF and (ii)
its simple dynamical rules allow a detailed numerical study
of current fluctuations.

In Appendix A we apply the additivity formalisms of the
previous section to study current fluctuations in the KMP
model. In particular, we use Egs. (4) and (5) to derive ana-
lytical expressions for the current LDF G(g) and the associ-
ated optimal profiles 7,(x), see Figs. 1 and 2. In this case it
can be shown that optimal profiles can be either monotone or
nonmonotone with a single maximum, see Appendix A for
the explicit calculations. In what follows, we compare this
set of analytical predictions with computer simulation
results.

IV. NUMERICAL TEST OF THE ADDITIVITY PRINCIPLE

The simplicity and versatility of the KMP model allows
us to obtain explicit analytical expressions for G(g) and T ,(x)
based on the additivity conjecture, see Appendix A. Figs. 1
and 2 show the theoretical current LDF and the associated
optimal profiles, respectively. We find that Py(g,T;,Tx,?) is
Gaussian around {g) with variance of(7T), while non-
Gaussian, exponential tails develop far from (g), with decay
rates given by the inverse bath temperatures. Exploring by
standard simulations these tails to check BD theory is very
difficult, since LDFs involve by definition exponential un-
likely rare events. This is corroborated in Appendix B, where
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FIG. 1. (Color online) G(q) for the KMP model as derived from

the additivity principle for 7;=2 and Tr=1. Notice the linear decay

for large enough |g|. Vertical lines signal the crossover from mono-

tone (|g| < /3) to nonmonotone (|g|>7/3) optimal profiles. The

Gaussian approximation for ¢=(g), G(¢)=-3(|g|-3)?/14, is also
shown.

G(q) is measured directly but we are unable to gather enough
statistics in the tails of the current distribution to validate or
falsify the additivity hypothesis. Recently Giardina, Kur-
chan, and Peliti [20] have introduced an efficient method to
measure LDFs in many-particle systems based on a modifi-
cation of the dynamics so that the rare events responsible of
the large deviation are no longer rare [21]. This method
yields the Legendre transform of the current LDF, u(\), see
Eq. (10). If Uei is the transition rate from configuration C
to C' of the associated stochastic process, the modified dy-
namics is defined as Upro(N)=Uer exp(Nere), where Jore
is the elementary current involved in the transition C— C'. It
can be then shown (see Appendix C) that the natural loga-

rithm of the largest eigenvalue of matrix U\) gives u(\).
The method of Ref. [20] thus provides a way to measure
#(N) by evolving many copies or clones of the system using
the modified dynamics U(N), see Appendix C.

We applied the method of Giardina et al. to measure wu(\)
for the 1D KMP model with N=50, T;=2, and Tz=1, see
Fig. 3, top panel. The agreement with BD theory is excellent

3.

— 1

lq=3.1
lal=1.73
lgl=1.14

- |q|=0.77

la|=0.5

© |al=0.28

ql=0.093

FIG. 2. (Color online) Optimal T,(x) for different values of lg

bl

both in the monotone and nonmonotone regimes, for 7;=2 and
Tr=1. The optimal profiles are independent of the sign of the cur-
rent, T,(x)=T_,(x).
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FIG. 3. (Color online) Legendre transform of the current LDF
for the KMP model in one dimension in a temperature gradient (top,
T;=2 and Tg=1) and in equilibrium (bottom, T;=1.5=T%). Sym-
bols correspond to numerical simulations, full lines to BD theory,
and dashed lines to Gaussian approximations (see text). Error bars
(with five standard deviations) are always smaller than symbol
sizes. The vertical dotted lines in top panel signal the transition
between deviations for which the associated temperature profile is
monotone (inner region) or nonmonotone (outer region). In equilib-
rium profiles are nonmonotone for all current fluctuations. The inset
in the bottom panel tests the Gallavotti-Cohen relation in equilib-
rium by plotting the difference w(N)—u(—N).

for a wide \ interval, say —0.8 <\ <0.45, which corresponds
to a very large range of current fluctuations, see inset to Fig.
I1 in Appendix C. Moreover, the deviations observed for
extreme current fluctuations are due to known limitations of
the algorithm [14,20-22], so no violations of additivity are
observed. Notice that these spurious differences seem to oc-
cur earlier for currents against the gradient, i.e., N<0. In
fact, we can use the Gallavotti-Cohen symmetry, which in A
space now reads u(N)=u(-\-E&) with é‘:(T',;'—TZl), to
bound the range of validity of the algorithm: Violations of
the fluctuation relation indicate a systematic bias in the esti-
mations provided by the method of Ref. [20], see also [22].
Fig. 4. shows that the Gallavotti-Cohen symmetry holds in
the large current interval for which the additivity principle
predictions agree with measurements, thus confirming its va-
lidity in this range. However, we cannot discard the possibil-
ity of an additivity breakdown for extreme current fluctua-
tions due to the onset of time-dependent optimal profiles
expected in general in HFT [4], although we stress that such
scenario is not observed here. Exploring this interesting pos-
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< 0.015F
0.01%,
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FIG. 4. (Color online) Measured w(\) and u(—\—&) superim-
posed. The Gallavotti-Cohen symmetry is satisfied for a wide range
of \. The inset shows the difference w(\)—u(-\=E).

sibility would require a modification of the advanced Monte
Carlo scheme of Ref. [20].

We also measured the current LDF in canonical equilib-
rium, i.e., for T;=Tx=1.5, see the bottom panel in Fig. 3.
The agreement with BD theory is again excellent within the
range of validity of our measurements, which expands a
wide current interval, see inset to Fig. 3, and the fluctuation
relation is verified except for extreme currents deviations,
where the algorithm fails to provide reliable results. Notice
that, both in the presence of a temperature gradient and in
canonical equilibrium, w(\) is parabolic around A=0 mean-
ing that current fluctuations are Gaussian for g={(g), as de-
manded by the central limit theorem, see Egs. (A15) and
(A16) in Appendix A. This observation is particularly inter-
esting in equilibrium, where canonical and microcanonical
ensembles behave differently (see below).

The additivity principle leads to the minimization of a
functional of the temperature profile, 7,(x), see Eqs. (4) and
(5). A relevant question is whether this optimal profile is
actually observable. We naturally define T,(x) as the average
energy profile adopted by the system during a large deviation
event of (long) duration 7 and time-integrated current gf,
measured at an intermediate time 1<71<t, ie., T,(x)
ETg“d(x). Fig. 5 shows the measured T‘}I“d(x) for both the
equilibrium and nonequilibrium settings, and the agreement
with BD predictions is again very good in all cases, with
discrepancies appearing only for extreme current fluctua-
tions, as otherwise expected. See also Fig. 14 in Appendix B.
This confirms the idea that the system indeed modifies its
temperature profile to facilitate the deviation of the current,
validating the additivity principle as a powerful conjecture to
compute both the current LDF and the associated optimal
profiles. Our numerical results show also that optimal pro-
files are indeed independent of the sign of the current,
T\ (x)=T_\_¢(x) or equivalently T, (x)=T_,(x), a counterintui-
tive symmetry resulting from the reversibility of microscopic
dynamics. Notice that in the equilibrium case (7T, =Ty) opti-
mal temperature profiles are always nonmonotone with a
single maximum for any current fluctuation g # (g) (the sta-
tionary profile is obviously flat). This is in stark contrast to
the behavior predicted for current fluctuations in microca-
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FIG. 5. (Color online) Excess temperature profiles for different
current fluctuations, for a system subject to a temperature gradient
(top, Ty =2, Tg=1) and in equilibrium (bottom, 7;=1.5=T). In all
cases, agreement with BD theoretical predictions (lines) is very
good within the range of validity of the computational method.
Dotted symbols correspond to midtime profiles obtained from end-
time statistics (see text).

nonical equilibrium, i.e., for a one-dimensional closed diffu-
sive system on a ring [4,18,19]. In this case the optimal
profiles remain flat and current fluctuations are Gaussian up
to a critical current value, at which profiles become time
dependent (traveling waves) [19]. Hence current statistics
can differ considerably depending on the particular equilib-
rium ensemble at hand, despite their equivalence for average
quantities in the thermodynamic limit. Finally, notice also
that equilibrium optimal profiles are symmetric with respect
to x=1/2, as expected since T;=Tk.

For small enough current fluctuations around the average,
q={q) with {(g)=1/2 for T;=2 and Tx=1, BD theory pre-
dicts the limiting behavior

W - %X(l ~0)(5-0+002q¢-1). (22)

Fig. 6 confirms this scaling for 7,(x) and many different
small current fluctuations around the average. In particular, it
shows data obtained both from standard simulations (see Ap-
pendix B) and using the advanced method of Ref. [20].

It is also interesting to study the statistics of configura-
tions both during a large deviation event and at the end. They
differ due to final transient effects which decay exponentially
fast, but a connection exists between both regimes which
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FIG. 6. (Color online) Scaling plot of the excess profiles for
small current fluctuations. Here we plot results obtained from stan-
dard simulations (solid symbols) and the advanced algorithm of
Ref. [20] (open symbols), as well as the theoretical prediction
(line).

highlights the symmetry of midtime statistics resulting from
the reversibility of microscopic dynamics (symmetry akin to
the fluctuation relation). Reversibility in stochastic dynamics
stems from the condition of local detailed balance [13],
which implies a relation between the forward modified dy-

namics for a current fluctuation, U (N), and the time reversed

modified dynamics for the negative fluctuation, l7T(—)\—S),
see Eq. (D6) in Appendix D. This can be used to derive a
relation between midtime and endtime statistics (see Appen-
dix D),

P(CO)PSLAC)
e ’
Here PS™(C) [respectively, PY(C)] is the probability of
configuration C at the end (respectively, at intermediate
times) of a large deviation event with current-conjugate pa-
rameter \, and p&'=exp[-2Y , Bie;] is an effective weight for
configuration C={e;,i=1...N}, with ,8,-=Tzl+81f];_ll, while A
is a normalization constant. As for Eq. (2), the above relation
is valid only in the appropriate asymptotic (long-time) limit.
Eq. (23) implies that configurations with a significant contri-
bution to the average profile at intermediate times are those
with an important probabilistic weight at the end of both the
large deviation event and its time-reversed process. An im-
portant consequence of Eq. (23) is hence that P}"(C)
=PT;‘£ <(C) or equivalently quld(C)=PT[;d(C), so midtime sta-
tistics does not depend on the sign of the current. This im-
plies in particular that szd(x)=TT;d(x), but also that all
higher-order profiles (e"(x)), and spatial correlations
(e"(xy)...e"(x,,)), are independent of the current sign Vrn,m.
The above connection allows us to relate midtime and
endtime profiles for a given current fluctuation. For that we
need additionally a LE hypothesis, i.e., we now assume that
spatial correlations at the end of a large deviation event are
weak enough so the distribution Pj“d(C) can be approxi-
mately factorized, Pi“d(C) ~ Hf»\ile\“ (e;). In this way we ob-
tain a local equilibrium picture with local temperature pa-

rameter Tf\"d(leﬁ). This hypothesis can be numerically

PYY(C)=A (23)
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10T —T
A=-0.6

FIG. 7. (Color online) Semilog plot of local energy histograms
along the chain for different values of N at the end of the large
deviation event. Notice that, in all cases, energy distributions are
very close to exponential.

justified by measuring, at the end of the large deviation
event, local energy distributions along the chain for different
values of \, see Fig. 7. In all cases the distribution is com-
patible with local equilibrium to a large degree of accuracy.
Using Eq. (23) and the LE hypothesis we thus find

T () T (x)
TM(x) + T o(x) = BT T o(x)

TV (x) = (24)

Figure 8 shows endtime profiles 7¢"(x) measured both in
equilibrium (bottom) and nonequilibrium (top) conditions for
different values of \. These profiles are clearly asymmetric
upon current inversion, Tf\“d(x) * Tf‘}‘\d_ <(x), and most interest-
ingly they show boundary resistance which depends on A and
on the particular definition for the elementary current, see
[22]. In the equilibrium case the symmetry Tznd(x)=T°_r;d
(1-x) resulting from the reflection invariance in this case
(T;=Ty) is apparent in Fig. 8 (bottom). Figure 5 also shows
midtime profiles obtained from the measured T‘f\"d(x) via Eq.
(24). The agreement with theoretical predictions and direct
measurements of midtime profiles is good, though discrep-
ancies appear for large enough current fluctuations, pointing
out that corrections to LE are weak but increase for large
current deviations. We show below that these corrections are
also present for small current fluctuations and can be
measured.

We can now explore physics beyond the additivity con-
jecture by studying fluctuations of the system total energy,
e(C)=N"'=¥ ¢;, for which current theoretical approaches
cannot offer any general prediction. An exact result by Ber-
tini, Gabrielli, and Lebowitz (BGL) [27] predicts that

1
my(e) = méE(e) + E(TL —Tx)?, (25)

where m,(e)=N({e?)—{e)?) is the variance of the total energy
in the NESS, méE is the variance assuming a LE product
measure, and the last term reflects the correction to LE due to
weak long-range correlations in the NESS [27], which in this
case results in the enhancement of energy fluctuations. Cor-
rections to LE vanish in the thermodynamic limit but extend

PHYSICAL REVIEW E 81, 041102 (2010)

FIG. 8. (Color online) Excess temperature profiles measured at
the end of the large deviation event for different values of A, both in
the presence of a temperature gradient (top), 7;=2 and Tx=1, and
in canonical equilibrium (bottom), 7;=1.5=T. Notice that in all
cases Tind(x) #* Tf‘;\d_g(x), although for the equilibrium case the sym-
metry Tf\"d(x) = Te_';\d(l —x) is apparent.

over macroscopic distances (of order N), giving rise in gen-
eral to a nonlocal current LDF [27]. In our case,

7
m5E = —(T} + T Tp+ Ty) = 3~ 23333, (26)

W | =

while m,=29/12~2.4166. Figure 9 plots m,(e,\)=N[{e?),
—<e>i] as a function of \ for both equilibrium and nonequi-
librium conditions, showing a nontrivial, interesting structure
which both BD theory and HFT cannot explain. One might
obtain a theoretical prediction for m,(e,\) by supplementing
the additivity principle with a LE hypothesis,

o TV __ &
P\(C) = I11L, exp[ T)\( - )], (27)

N+1

which results in
1
m5E(e,\) = f Ty (x)%dx. (28)
0

This prediction agrees qualitatively with the observed behav-
ior, though fine quantitative differences are apparent, see Fig.
9, as otherwise expected. In particular we find that, out of
equilibrium, m5%(e,0)~2.33 as corresponds to a LE picture
and in contrast to the measured value m,(e,0)=2.422(14) in

041102-7



PABLO I. HURTADO AND PEDRO L. GARRIDO

o

=]
K 4
" BGL: 20/12]
LE:7/3

I
|
1 5 0 05

FIG. 9. (Color online) Fluctuations of the total energy per site
versus A for both equilibrium (OJ, T; =1.5=T%) and nonequilibrium
(O, T; =2, and Tx=1) conditions. The lines stand for predictions
based on the additivity principle plus a local equilibrium hypoth-
esis. Inset: average energy per site and BD prediction in both situ-
ations. Notice that, as before, deviations observed in all cases for
extreme current fluctuations are spurious and result from known
limitations of the method of Ref. [20].

Fig. 9, which compares nicely with the exact BGL result
29/12 (recall that A=0 corresponds to g={(g)). This shows
that, even though LE is a sound numerical hypothesis to
obtain T\ (x) from endtime statistics for small and moderate
current fluctuations, see Fig. 5 and Eq. (24), corrections to
LE become apparent at the fluctuating level even for small
current fluctuations. This is also shown in Fig. 15 in Appen-
dix B, where fluctuations of the total energy under nonequi-
librium conditions are studied in standard simulations. On
the other hand, in the canonical equilibrium case (7,=1.5
=Ty) no corrections to LE show up for A=0 (i.e., for ¢
=(gy=0), as expected. However, as soon as g # (g), devia-
tions of my(e,\) from the LE prediction méE(e,)\) are ob-
served, thus showing that local equilibrium is broken at the
fluctuating level even for equal bath temperatures.

Finally, the inset to Fig. 9 shows the average energy per
site as a function of A\, together with the prediction based on
the additivity principle, (e),=/oT\(x)dx. Agreement is again
very good in the large range of currents explored. It is inter-
esting to note that in order to sustain a current fluctuation
above the average, g>(g) or equivalently A >0, the non-
equilibrium system (7, >Tg) has always a larger average
energy than its equilibrium counterpart (7;,=T%), while the
reverse holds for current fluctuations below the average, g
<{q), see inset to Fig. 9.

V. JOINT FLUCTUATIONS OF THE CURRENT
AND THE PROFILE

For long but finite times, the profile associated to a given
current fluctuation is subject to fluctuations itself [14,28,29].
These joint fluctuations of the current and the profile are
again not described by the additivity principle, but we may
study them by extending the additivity conjecture. In this
way, we now assume that the probability to find a time-
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integrated current g/ N and a temperature profile Tq(x) after
averaging for a long but finite-time ¢ can be written as

WNL%,quc) ;r} ~ exp(+ Jivé[q,i,oc)]), (29)
where now

g + AT, WIT, (0] J
— x.
0 20{T,W)]

Glg.T,(0]=~ (30)

Notice that here no minimization with respect to temperature
profiles is performed, see Eq. (4). In this scheme the profile
obeying Eq. (5), i.e., the one which minimizes the functional
G, is the classical profile T,(x). For a given g value we can

make a perturbation of Tq(x) around its classical value,

Ty(x) = T, () + (). (31)

For large enough ¢, the joint probability of ¢ and 7,(x) can be
written as

Wilg, ny(x)1] _

1
i o] s i)

(32)

where Py(q,1) is defined in Eq. (1), together with Egs. (4)
and (5). The integral kernel is

1dl,d 1 & _K(gqg*
Ldr,d 1 zﬂ}g(x_y).

LW
“A (xy) = _ “
e Y ZTZ dx dx 4T§d)c2 Tg

(33)

One can show that the kernel A, (x,y) is symmetric with
respect to x and y. In order to check the above joint prob-
ability distribution, we studied the observable

(T2(x)) - T2 = (7)) = A7 (x,0), (34)

where

A () =2 ¢,'v,(x:9)v,(v:9). (35)
n=1

and v,(x;q) and ¢, are the eigenvectors and eigenvalues of
kernel A, respectively,

f dxA (x,y)v,(x:q) = $0,(y:9), (36)

with v,(0;¢)=0=v,(1;q). For g={g)=1/2 (nonequilibrium
conditions, T; =2, Tx=1) we were able to solve the eigen-
value equation, yielding

v,(x31/2) = BT () {34, T1) 314l B T12(x)*]
~ J34( BT 34l .1 2()T}, (37)

where ¢,=(¢p,N/t)"2/(T,—Tg), J’s are the Bessel functions
and B is the normalization factor that is obtained by requir-
ing
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FIG. 10. (Color online) Finite-time profile fluctuations (né(x)}.
Blue circles are the numerical evaluation of the series expansion
from the extended BD theory (see text). Diamonds and squares
represent standard simulation results for ¢’s in the interval shown in
the figure, N=50 and r=4000 and ¢=10°, respectively.

1
f dxv,(x;1/2)*=1. (38)
0
Finally, ¢, are the solutions of the equation

T34 BT 34( D TR) = J 34( b, T)T3u(D,T7) . (39)

We compare in Fig. 10 the numerical evaluation of A7} (x,x)
(where we have computed 10, 15, 30, 50, 100, and 200 terms
of the series and extrapolated to n— o) with the standard
simulation results for N=50 and t=4000 and #=10°. We ob-
serve a good agreement between theoretical and simulation
results. Notice that we average over a small ¢ window
around ¢g=1/2 in simulations. These results show that the

BD functional G[q,T,(x)] of Eq. (30) contains the essential
information on the joint fluctuations of the current and the
average profile, extending the validity of the additivity prin-
ciple to finite-time situations.

VI. CONCLUSIONS

In this paper, we have confirmed via extensive computer
simulations the validity of the additivity principle for current
fluctuations in the 1D Kipnis-Marchioro-Pressuti model of
energy transport. In particular, we found that the current dis-
tribution shows a Gaussian regime for small current fluctua-
tions and non-Gaussian, exponential tails for large deviations
of the current such that in all cases the fluctuation relation
holds. We verified the existence of a well-defined tempera-
ture profile associated to a given current fluctuation, different
from the steady-state profile and invariant under current re-
versal. In addition, we extended the additivity conjecture to
joint current-profile fluctuations.

Our results thus strongly support the additivity hypothesis
as an important tool to understand current statistics in diffu-
sive systems, opening the door to a general approach to a
large class of nonequilibrium phenomena based on few
simple principles. Our results do not discard however the
possible breakdown of additivity for extreme current fluctua-
tions due to the onset of time-dependent profiles although we

PHYSICAL REVIEW E 81, 041102 (2010)

stress that this scenario is not observed here and would affect
only the far tails of the current distribution. In this respect it
would be interesting to study the KMP model on a ring, for
which a dynamic phase transition to time-dependent profiles
is expected [4,18,19]. Also interesting is the possible exten-
sion of the additivity principle to low-dimensional systems
with anomalous, nondiffusive transport properties [11], or to
systems with several conserved fields or in higher
dimensions.
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APPENDIX A: PREDICTIONS USING THE ADDITIVITY
PRINCIPLE

In this appendix, we use the KMP model values for
K(T)=% and o(T)=T? in Eqgs. (4) and (5) to derive explicit
predictions for the current large deviation function in this
model and the associated optimal temperature profiles. In
what follows we assume 7, > Ty without loss of generality.
The differential equation for the optimal profile in the KMP
case reads

2
(d_Tq@) = 44{1 + 22K (). (Al

dx
Here two different scenarios appear. On one hand, for large
enough K(g?) the right-hand side of Eq. (A1) does not vanish
Vxe[0,1] and the resulting profile is monotone. In this
case, the optimal profile obeys

d—qu? =—2|g|\1 + 2T2(0)K(g?). (A2)

On the other hand, for K(¢%)<O0 the rhs of Eq. (A1) may
vanish at some points, resulting in a 7,(x) that is nonmono-

tone and takes an unique value T;E V=1/2K(g% in the
extrema. Notice that the right-hand side of the above equa-
tion may be written in this case as 4¢°[ 1 —(T,(x)/ 7:)2] It is
then clear that, if nonmonotone, the profile Tq(x) can only
have a single maximum Tq(x*)=TZ because: (i) Tq(x)ST;
Vx e[0,1] for the profile to be a real function and (ii) sev-
eral maxima are not possible because they should be sepa-
rated by a minimum, which is not allowed because of (i). In
this case

T, 2 .
+2|q| 1—(—"—(f)> , x<xt
dT() T,

_j__ T . (A3)
X
~2|q| 1—(%) . x>x

q
This leaves us with two separated regimes for current fluc-

. . . T,
tuations, with the crossover happening for |g|=%
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[5—sin™! (;—'Z)]. This crossover current may be obtained from
Eq. (A13) below by letting T, — T}.

1. Region I: |g| < %[%—Sin_l(;—:)]

In this region the optimal profile 7,(x) is monotone in x
€[0,1]. Equation (8) then leads to

Y L N B
g(q)—2<TR TL) q°K(q”)

|q|( 1+2K(q2)TL V1 +2K(A T

2 T, Tx ) (ad)

where K(g?) is a constant defined by the boundary condi-
tions. The optimal temperature profile 7,(x) in this regime is
the solution of the following implicit equation:

5 1
T +\|T; + 5
1 2K(g)
24g| = —=1n ,
V2K(q?)

1
T,(x)+ 4/ Tq(x)2 + 2K |

whenever K(g?)>0, or rather

(A5)

214l sin” [\~ 2K(g)T,] - sin™' [\= 2K(¢)) T, (x)]
x|q| = s
! V- 2K(q%)

(A6)

in the case —ﬁ<K(q2) <0, see Eq. (A2). Making x=1 and
T,(x=1)=Tg here we obtain the implicit equation for the
constant K(g?).

Sometimes it is interesting to work with the Legendre
transform of the large deviation function, u(\)
=N"" max,[G(q)+Ng]=G(g,)+\q,, with g,(\) given by
) Q(q0)+)\ 0, and where now —T' <A <T;'. It then fol-
lows

POSES —[qo(x)]2 (A7)

/ 1
T, + Ti+m

1
T+ \/TR TGN

where

2|g,(N)] = . (AB)

V2K ()\)
when K(\)>0, or instead
sin™![\=2K(\) T, ] - sin™'[V= 2K(\) Tg]

zlqo()\) | = ”T()\) ’
=

(A9)

in the case 2T2<K()\)<O and the constant K(\)

=Klq,(\)?] is solution of the implicit equation

PHYSICAL REVIEW E 81, 041102 (2010)

1(1 1) sgnlg,(\)]
Ne—o| - |
2 2

T, T
2] 2
Xl\/1+2K()\)TR_\1+2K()\)TL]' A10)
Tx T,

The optimal profile for a given X is just 7,(x)=T, ()(x). In A
space, monotone profiles are expected for N € [A_,\, ] where
No=—(TR' =T, /2 = 1= (Tp/ T))?/ (2T).

2. Region II: [g| > 2[Z -sin™ (7]

In this case the optimal profile is nonmonotone with a
single maximum T" T,(x"), see Eq. (A3). In this regime

K(¢*) <0, and T,= 1/\ 2K(q2) It follows
| | . _1<TR) . _1(TL) ‘]( 1 1 )

—sin™'| — | —sinT | = | |+ -—

G(a)= 4T, T, T T, T,

- (TR) (“)
_lal 1
5 .

The optimal profile solution of Eq. (A3) is given by

%[sin'%%)—sin"l(%”, x<x*

1+ 27|;| {sin_l(%) - sin‘(%)}, x>x"

(A12)

(A11)

xX=

At the location of the profile maximum, x=x", both branches
in the above equation must coincide and this condition pro-
vides equations for both x* and T;

T, T, T,
|q|=J[W—sin'1<—L>—sin'1<—R)}, (A13)
2 )

aa . _1<TL>
— — S _—
. 2 7,

T - sin‘l(ﬂ) —sin‘1<§> .
T T

q q

(A14)

As in Regime I, we find for the Legendre transform w(\)=
-NT'K(N)g,(N)*=(2N)"[¢q,(\)/ T} %, with g,(\) defined in
Eq. (A13), T{=T, (), and \ given as in Eq. (A10) but with
the notation change KO\ —=1/[2(T))*]. Nonmonotone pro-
files are then expected for N e [-T3', A\_)U(\,, T, T 1.

Figure 1 in the main text shows the predicted G(g) for the
KMP model. Notice that the large deviation function is zero
for g=(q)=(T;—Tg)/2 and negative elsewhere. Moreover,
for large current fluctuations it decays linearly, G(g)—
—q/ Ty for |q|>{(g). For a small positive current fluctuation,
K(g*) —0 and
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FIG. 11. (Color online) Top panel: Constant K as a function of q

for Tr=2 and T;=1. Bottom panel: the same constant as a function
of \. The inset shows the current ¢, conjugated to \.

T, — Ty \?
3(""_ ) R)

2T+ T, Tp+Tz)’

Glg) = - (A15)

which translates into

m(N) = %V|:(TL_ Tg) + %(T%"' T, Tg+ T%e)] , (Al6)

for the Legendre transform. Therefore the probability of
small current fluctuations is Gaussian in g while it becomes
exponential for large enough deviations from the average,
see Eq. (1). It is easy to show that the Gallavotti-Cohen
symmetry holds, with

Tk (T) (1 1

— = a—n»(mn

ﬁ@—ﬁ—®=hﬁkdn—

or equivalently

ONENTICO NI (A18)
with £=(T3'-T;"). Figure 2 in the main text shows the op-
timal temperature profiles for different current deviations.
Notice that the optimal profile is independent of the sign of
the current, i.e., T,(x)=T_,(x), reflecting the time-reversal
symmetry of microscopic dynamics [12,13]. Finally, Fig. 11
shows, for information purposes, the integration constant K
as a function of both ¢ and A, as well as A dependence of

q,(N).

PHYSICAL REVIEW E 81, 041102 (2010)

i L
i

7/

\_
N T

N

1
1
1
1
1
1
1
1
1
1
1

— Bodineau-Derrida 1

-- 3@12%14 |

1
1
1
1
1
1
1
1
1
1
1
1
|

(@)

o N=1000, t=1000
N=1000, t=10000
N=50, t=4000

1.4 Non-monotone Monotone Non-monotone _|

1 L 1 L 1 L 1 L 1 L 1
2 15 -1 -05 0 05 1
q

R
1.5 2

FIG. 12. (Color online) G(g) measured for different system sizes
N and measurement times 7 (see text), with 7;=2 and T=1 fixed.
Lines correspond to BD theory and the Gaussian approximation.

APPENDIX B: STANDARD SIMULATIONS

In order to see how far standard simulations can go in
evaluating current large fluctuations, and to crosscheck our
results with the more advanced simulation methods de-
scribed in Appendix C, we performed a large number of
steady-state simulations of long duration ¢, with 7;=2 and
Tr=1, measuring the total time-integrated current Q,=¢t and
accumulating statistics for g. Figure 12 shows the measured
G(q) obtained for different system sizes N and durations .
Our simulations for N=1000 and different times t<<N? fol-
low closely the Gaussian law G(g)=~-3(q—1/2)?/14 ob-
tained from the first two moments prescribed by the additiv-
ity principle in this case, namely,

T, -Tg
my=—-—_,

2

T2+ T, Tp+ T
m2=f.

This Gaussian behavior is expected for small fluctuations
around the average current, see Eq. (A15), but deviations
away from Gaussianity should be already observed in the
current range studied, see the theoretical prediction. In par-
ticular, the theoretical G(g) implies a nonzero third central
moment, but we have not found numerical evidence of such
a deviation for N=1000. This lack of structure stems from
the relatively short duration of the simulations for N=1000,
i.e., our results are not in the diffusive regime (<N’ here)
and therefore we have not reached the asymptotic behavior.

We performed two set of simulations in the diffusive re-
gime > N2, namely, N=50 with = 10° and 4000. In the first
case there were no events outside the current interval g
€[0.45,0.56], for which the BD prediction is numerically
indistinguishable from the Gaussian one. On the other hand,
the case N=50 and r=4000 shows systematic deviations
from Gaussian behavior, seemingly compatible with BD
theory, see Fig. 12. However, large error bars resulting from
the difficulty of gathering statistics in this rare-fluctuation
regime do not allow us to exclude Gaussian behavior. In this
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FIG. 13. (Color online) Test of the fluctuation theorem of Gal-
lavotti and Cohen. Here we explore N=50 and different maximum
times ¢. If BD theory holds a slope 1/2 is expected, while Gaussian
behavior involves a slope 3/7.

way, standard simulation results are inconclusive, as other-
wise expected, and the more refined simulation techniques of
Appendix C are called for.

We also tested the Gallavotti-Cohen relation in standard
simulations for our system. This symmetry implies that

.1 Pyq,T;,Tg,t)
lim—In——————=

=&, Bl
ot P g T T ! (B1)

where £=(T¢'-T;')=1/2 in this case. Notice that if we as-
sume Py(q,T;,Tg;t) to be Gaussian with the moments de-
fined above, then one expects £=3/7. Figure 13 shows the
above quotient as measured for N=50 and different values of
t. It shows a systematic deviation from Gaussian behavior
which increases with 7. However, we do not see clearly £
=1/2 and this means again that our standard simulations are
still far from the true asymptotic regime in ¢.

Another prediction of the additivity principle concerns the
existence of an optimal temperature profile that the system
adopts in order to facilitate a given current fluctuation. We
measured in standard simulations the average energy profile
during a current large deviation event, obtaining the results
shown in Fig. 14. As above, only for small current fluctua-
tions we could gather enough statistics for the data to be

O-O q-0512353
=0.5097235
0.004 ' T g T
<< g=050183
=0.499205
5 Sy
< 0.002 X3 q=0491316
k7 *—% =0.488686
'_
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— S
X o0
h=]
1S
|_C'
-0.002|
-0.004 1 1 1
0.00 0 0.2 0.4 0 0.8 1

FIG. 14. (Color online) Excess average profiles during a large
deviation event for small current fluctuations, as measured in stan-
dard simulations. Agreement with BD theoretical predictions (lines)
is excellent.
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FIG. 15. (Color online) Fluctuations of total energy vs ¢ mea-
sured in standard simulations for r=10° (O) and LE results (OJ).
Inset: similar results for t=4000. Notice the nontrivial structure.

significative. In any case, the theoretical optimal profiles
compare nicely with data, confirming the existence of a well-
defined temperature profile for each current deviation.

We also measured the fluctuations of the total energy in
standard simulations. Figure 15 shows our results in this
case. In particular, we measured m,(e)=2.4(1) for N=50 and
a maximum time 7=4000 and m,(e)=2.42(2) for t=10°, in
agreement with Eq. (26). This figure also shows m,(e,q) and
m5%(e,q) build from simulation data for T,(x). As in Fig. 9,
we see a clear deviation from local equilibrium and a well
defined structure not predicted by BD theory. Notice that,
again, values of m,(e,q) for g=1/2 coincide with the ex-
pected average values with no current constraint. The data
shown in this figure agree nicely with those measured with
the advanced technique in the studied range, see Fig. 9.

APPENDIX C: EVALUATION OF LARGE-DEVIATION
FUNCTIONS

Large deviation functions are very hard to measure in
experiments or simulations because they involve by defini-
tion exponentially unlikely events, see Eq. (1). Recently,
Giardina, Kurchan, and Peliti [20] have introduced an effi-
cient algorithm to measure the probability of a large devia-
tion for observables such as the current or density in stochas-
tic many-particle systems. The algorithm is based on a
modification of the underlying stochastic dynamics so that
the rare events responsible of the large deviation are no
longer rare and it has been extended for systems with
continuous-time stochastic dynamics [21]. Let Ui be the
transition rate from configuration C to C'. The probability of
measuring a time-integrated current Q, after a time ¢ starting
from a configuration C,, can be written as

-1
P(Q.1:C) = 2, Ucc,, - -Uclco5<Qt—2Jck+lck)a
k=0

C,.Cy
(C1)
where J is the elementary current involved in the transi-

tion C— C’. For long times we expect the information on the
initial state C, to be lost, P(Q,,;Cy) — P(Q,,?). In this limit
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P(Q,,t) obeys the usual large deviation principle P(Q,,?)
~exp[+tF(g=Q,/1)]. In most cases it is convenient to work
with the moment-generating function of the above distribu-
tion

-1
(A1) =2 rP(Qu0)= 2 Uee . . Ug e, et
o €y

(C2)

For long 1, we have II(\,r)—exp[+tu(N)], with w(N\)
=maxq[]-"(q)+)\q]. We can now define a modified dynamics,

Uch = e}\JC/CUcrc, SO

H()\,t) = 2 E,tht—l (7C1C0'
C,...C

(C3)

This dynamics is however not normalized, Ecrljc,caﬁ 1.

‘We now introduce Dirac’s bra and ket notation, useful in
the context of the quantum Hamiltonian formalism for the
master equation [23,24], see also [20,25]. The idea is to as-
sign to each system configuration C a vector |C) in phase
space, which together with its transposed vector (C|, form an
orthogonal basis of a complex space and its dual [23,24]. For
instance, in the simpler case of systems with a finite number
of available configurations (which is not the case for the
KMP  model), one could write |C)YT=(C]|
=(...0...0,1,0...0...), i.e., all components equal to zero ex-
cept for the component corresponding to configuration C,
which is 1. In this notation, Ucr=(C’|U|C) and a probabil-
ity distribution can be written as a probability vector

|P(1)) = 2, P(C,1)|C),
C

where P(C,t)=(C|P(t)) with the scalar product (C'|C)
=8crc. If {s|=(1...1), normalization then implies (s|P(t))
=1.

With the above notation, we can write the spectral decom-
position 17()\)=EjeA/'()‘)|Af()\))(AJL-()\) , where we assume
that a complete biorthogonal basis of right and left eigenvec-
tors for matrix U exists, 17|Af()\)>:eA.i(")|Af()\)> and
(A]L()\)|17 :eA/(")<AJL()\)|. Denoting as e*™ the largest eigen-
value of U(N), with associated right and left eigenvectors
|AR(\)) and (AL(N)|, respectively, and writing TI(\,?)
=EC[<C,|I7’|CO), we find for long times

>1

H(x,rhe+’A<”<AL(x)|Co>(E<cf|AR(x>>). (C4)

¢

In this way we have w(\)=A(\), so the Legendre transform
of the current LDF is given by the natural logarithm of the

largest eigenvalue of U(\). In order to evaluate this eigen-
value, and given that dynamics U is not normalized, we in-
troduce the exit rates Y =2 U crc and define the normalized
dynamics Uy, .=Y¢ Uerc. Now
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FIG. 16. (Color online) Sketch of the evolution and cloning of
the copies during the evaluation of the large deviation function.

O\D= 2 Yo Uec --YeUec, — (C9)

C,...C,
This sum over paths can be realized by considering an en-
semble of M > 1 copies (or clones) of the system, evolving
sequentially according to the following Monte Carlo scheme
[20]:

(I) Each copy evolves independently according to modi-
fied normalized dynamics Ué, c

(IT) Each copy m € [1,M] (in configuration C[m] at time
1) is cloned with rate Y, c[m)- This means that, for each copy
m e [1,M], we generate a number K¢ [,)=[Y¢[,,)]+1 of iden-
tical clones with probability th[m]—[th[m]J, or K¢
=[th[m]J otherwise (here |x] represents the integer part of x).
Note that if Kepm=0 the copy may be killed and leave no
offspring. This procedure gives rise to a total of M,
=2%=1KC,[m] copies after cloning all of the original M copies.

(TIT) Once all copies evolve and clone, the total number of
copies M| is sent back to M by an uniform cloning probabil-
ity X,=M/M|.

Figure 16 sketches this procedure. It then can be shown
that, for long times, we recover u(\) via

u(N) =— %ln(Xf X)) for r>1. (C6)

To derive this expression, first consider the cloning dynamics
above, but without keeping the total number of clones con-
stant, i.e., forgetting about step III. In this case, for a given
history {C,,C,_;...C,,Co}, the number N(C,...C,1) of cop-
ies in configuration C, at time t obeys MN(C,...Cy,t)
=Yc U’C,CHN(CI—I ...Cy,1—1), so that

N(Cl e Co,t) = YC[—IU,C[Ct—I e YCOU,CICON(CO’O)'
(C7)

Summing over all histories of duration ¢, see Eq. (C5), we
find that the average of the total number of clones at long
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times shows exponential behavior, (N@))
=2¢ ¢ MC;...Co,1) ~MCy,0)exp[+tu(N)]. Now, going
back to step III above, when the fixed number of copies M is
large enough, we have X,=(N(t—1))/{(N(z)) for the global
cloning factors, so X,---X;=N(C,,0)/{N(r)) and we recover
expression (C6) for w(\).

In this paper, we used the above method to measure the
current LDF for the Kipnis-Marchioro-Presutti model in one
dimension, described in Sec. III. For this model the transition
rate from a configuration C={e,...ey} to another configura-
tion Ci={e;...e;,e/,,...eyt, with ye[0,N] and the pair
(e}',,e)’,H) defined as in Eqgs. (18) and (19), can be written as

(

(N+1)_1’ yE[17N_ 1]

B ,
E||B- , , =0

Upe=3 N+1 1[B- max(e;.e)] y
y B ﬂ e

+e * ’

El[ﬁ+ max(eNseN)]s y=N
L N+1

Here E,(x)=-Ei(-x), where Ei(x) is the exponential integral
function, or

El(x)=foc du%u. (C8)

It appears when integrating over all possible pairs (p,éy z)
that can result on a given e y, respectively, see Eq. (19) in
Sec. III. It is easy to show that Ucrc is normalized as it
should, so 2o Ucre=1. ’

In order to measure current fluctuations we need to pro-
vide a microscopic definition of the energy current involved
in an elementary move. There are many different ways to
define this current: the energy exchanged per unit time with
one of the boundary heat baths, the current flowing between
two given nearest neighbors or its spatial average, etc. As-
suming that energy cannot accumulate in the system ad in-
finitum [6,7,25], all these definitions give equivalent results
for the current large deviation function in the long-time limit.
However, this is not so for some observables different from
the large deviation function (e.g., for average profiles mea-
sured at the end of the large deviation event; see Ref. [22]).
In our case, the following choice turns out to be convenient

!

e,—e
L2 ye[1,N-1] (bulk exchange
o= N=1 7 [ 1 ( ge) .
V 0 y=0,N (boundary baths)

(C9)

That is, we measure the energy current flowing through the
bulk of the system. Using this current definition and Eq.
(C8), we may write the modified normalized dynamics
U,C;,CE Yy Ucic exp[NJc:cl. which for y € [1,N—1] reads

N ’
, e)\(ey—e y)

U.,.=———,
GCTYAN+1T)

(C10)

with N=X/(N-1), while U, .=Y¢'U¢r¢ for y=0,N, see Eq.
(C9). The exit rate is given yby '
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FIG. 17. (Color online) Time evolution of w(\) for A=-0.1 and
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In these paper, we simulate a system of size N=50, with
T;=2 and Tg=1, using M=10° copies of the system and a
maximum time of #=10* Monte Carlo steps. For a given
initial condition, we average the measured w(\) for different
times once in the steady state, after a relaxation time of 2
%X 103 Monte Carlo steps. In addition, we average results
over many independent initial conditions, in which local ini-
tial energies e; are randomly drawn according to the Gibbs
distribution with temperature parameter T [x=i/(N+1)] cor-
responding to the linear, steady temperature profile. Figure
17 shows the convergence of w(\) in time for a given value
of N and many different initial conditions. Using the above
method, we obtained an accurate measurement of the current
large deviation function, see Fig. 3 in Sec. IV.

APPENDIX D: TIME REVERSIBILITY AND STATISTICS
DURING A LARGE FLUCTUATION

In this Appendix, we use the time reversibility of the un-
derlying stochastic dynamics to study the system statistics
during a large deviation event and the symmetries of the
large deviation function and the associated optimal profiles,
using the formalism described in Appendix C. In particular,
we describe a relation between system statistics at the end of
the large deviation event and for intermediate times. First,
consider the probability P(C,,Q,,t) that the system is in con-
figuration C, at time ¢ with a total time-integrated current Q,.
As in the previous appendix, we drop the dependence of this
probability on the initial state C,, which we assume lost for
long enough times. This probability obeys the following
master equation

P(C,0ut) =2 U rP(C',Q,=Jcort=1),  (D1)

c’

which by iterating in time leads to
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P(Ct, 0O, t) =

> U cc,

Cr1-Cy

-1
. UC]C05<QI_ EOJC"”C") ;

(D2)

and it is clear that P(Q,,t)= EC P(C,,0,,t), see Eq. (Cl) in
the previous append1x Now, Pe"d(C,)
=P(C,,0,,1)/ P(Q,,t;Cy) is the probability of having a con-
figuration C, at the end of a large deviation event associated

to a current  ¢g=0Q,/t. Defining I1(C,,\,1)
:EQtexp()\Q,)P(C,,Q,,t) so that
(C,\.1) = 2 UCC - Ueye, (D3)

Cpy..

with Ugro(N)=Uerc exp(NJ i), one can easily show that,
for long times f, Pf\nd(Ct)EH(C,,)\,t)/H()\,t):Pf;{‘)‘(jx)(C,),
where ¢,(\) is the current conjugated to parameter \, and
IT(\,7) is defined in Eq. (C3). Using the spectral decompo-
sition of Appendix C, it is simple to show that P"Y(C))
o(C,| AR(N)), so the right eigenvector |[AR(\)) associated to

the largest eigenvalue of matrix U(N) gives the probability of
having any configuration at the end of the large deviation
event. Noticing that, for the Monte Carlo algorithm de-
scribed in the previous appendix, the fraction of clones or
copies in state C, is proportional to {C,|AX(\)) for long
times, see Eq. (C7), we deduce that the average profile
among the set of clones yields the mean temperature profile
at the end of the large deviation event, Tf\nd(x).

The initial and final time regimes during a large deviation
event show transient behavior which differs from the behav-
ior in the bulk of the large deviation event, i.e., for interme-
diate times [6]. In particular, as we will show here, midtime
and endtime statistics are different, though intimately related
as a result of the time reversibility of the microscopic dy-

namics. Let I3(CT,)\,T, t) be the probability that the system
was in configuration C, at time 7 when at time ¢ the total
integrated current is Q,. Timescales are such that 1 < 7<<t, so
all times involved are long enough for the memory of the
initial state C,, to be lost. We can write now

P(C,Q,71)= >

Cp...Cr1Croy.. .C

UCTCFI UC1'+ 1 CT

-1
- 2 JCk+le ’
k=0

XUcc Uclco5<Qr

(D4)

where we do not sum over C,. Defining the moment-
generating function of the above distribution, I_I(CT,)\,T, 1)
:EQtexp()\Q,)ﬁ(CT, Q,,7,t), we can again check that the

probability weight of configuration C, at intermediate time 7
in a large deviation event of current ¢=0Q,/1, P;md(CT)

=P(C,,0,,7.1)/P(Q,,1), is also given by PMY(C)
=I1(C,,\, 7,0)/TI(\,7) for long times such that 1 <7<t
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with g=g,(\). In this long-time limit one thus finds
PYM(C,) = (A V[CXCJAROV), (DS)

in contrast to P$"!(C), which is proportional to (C|AR())),
see above. Here |AR(\)) and (AL(\)| are the right and left
eigenvectors associated to the largest eigenvalue ™ of

modified transition rate U(\), respectively. They are different

because U is not symmetric. In order to compute the left
eigenvector, notice that |[AL(\)) is the right eigenvector of
the transpose matrix UT(\) with eigenvalue e*™. This right
eigenvector of ﬁT()\) can be in turn related to the corre-
sponding right eigenvector of U(-\=&) by noticing that the
local detailed balance condition holds for the KMP model,
guaranteeing the time reversibility of microscopic dynamics.
This condition states that Ucrpeg(C)=Uccrpeq(C’ )eflcre,
where p,(C) is an effective equilibrium welght which for the
KMP model takes the value peq(C) exp(—= V=1 B)e) with
C={e,,y=1...N} and B,= ;! +&+- Local detailed balance
then implies a symmetry between the forward modified dy-
namics for a current fluctuation and the time-reversed modi-
fied dynamics for the negative current fluctuation, i.e.,

Ucer= peq(C YU(-N— E)Peq(C) or in matrix form

U"(\) = P“U( A-EP (D6)

€q»
where P, is a diagonal matrix with entries p.,(C). Equation
(D6) implies that all eigenvalues of U(N\) and U(-\—=E€) are
equal, and in particular the largest, so w(\)=u(-\=¢€) and
this proves the Gallavotti-Cohen fluctuation relation. More-
over, if |AR( A=E&)) is a right eigenvector of U(-\—&),
which can be expanded as |AR( N=E))=2LC |AR
(=\=E&))|C), then

IA)) =S O NCAR-N-ElC), (D7)
C

is the right eigenvector of UT(\) associated to the same ei-
genvalue. In this way, by plugging this into Eq. (D5) we find

PMY(C) o (p9)HCIAR(= X = E)}C|AR(N)),

where we assumed real components for the eigenvectors as-
sociated to the largest eigenvalue. Equivalently

P(C) PO

eq
Pc

PY(C)=A (D8)
with A a normalization constant. This relation implies that
configurations with a significant contribution to the average
profile at intermediate times are those with an important
probabilistic weight at the end of both the large deviation
event and its time-reversed process. Supplementing the
above relation with a local equilibrium hypothesis, one can
obtain average temperature profiles at intermediate times in
terms of profile statistics at the end of the large deviation
event.
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